MAX materials and MXene materials are new two-dimensional materials which have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in many fields. The following is an in depth guide to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material composed of M, A, X elements in the periodic table, collectively called “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the primary group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is actually a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A means the main-group elements, and X means the elements of C and/or N. The MXene material is a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have a wide range of applications in structural materials. For example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be utilized in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. For instance, K4(MP4)(P4) is one in the MAX materials with high ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials really are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The top of MXene materials can connect with more functional atoms and molecules, and a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually include the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials are a new form of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are widely used in energy storage and conversion. For instance, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Additionally, MXene materials could also be used as catalysts in fuel cells to improve the action and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be utilized in electromagnetic protection. As an example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. For example, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. In addition, MXene materials could also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with all the continuous progress of technology and science and also the improving demand for services for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will likely be further expanded and improved. The subsequent aspects could become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and techniques can be further explored to realize a far more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, but there is still room for more optimization. Later on, the composition, structure, surface treatment along with other facets of the content can be studied and improved comprehensive to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be widely used in many fields, but you may still find many potential application areas to get explored. Down the road, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection along with other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in many fields. With the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.